જો $A = \left[ {\begin{array}{*{20}{c}}
  2&b&1 \\ 
  b&{{b^2} + 1}&b \\ 
  1&b&2 
\end{array}} \right]$  કે જ્યાં $b > 0$. તો $\frac{{\det \left( A \right)}}{b}$ ની ન્યૂનતમ કિમંત મેળવો.

  • [JEE MAIN 2019]
  • A

    $2\sqrt 3$

  • B

    $-2\sqrt 3$

  • C

    $-\sqrt 3$

  • D

    $\sqrt 3$

Similar Questions

સમીકરણની સંહતિ $(k + 1)x + 8y = 4k,$ $kx + (k + 3)y = 3k - 1$ ને અનંત ઉકેલ હોય, તો $k$ ની કિમત મેળવો.

  • [IIT 2002]

$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $

જો $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ અને $\alpha \ne \frac{1}{2} $ તો . . .

નિશ્ચાયકની કિમત મેળવો  : $\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$

$\lambda $ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણો $2x + 4y - \lambda  z = 0$ ;$4x + \lambda y + 2z = 0$ ; $\lambda x + 2y+ 2z = 0$ ને અનંત ઉકેલ મળે.

  • [JEE MAIN 2017]